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0. Introduction

In this article we will survey the results of Sarnak and surrounding mathemati-

cians of him on the distribution of zeros of zeta functions. The chief concern is the

spacing distribution of zeros. We begin with explaining what spacing distribution

is.

Spacing Distribution.

Let λ0 ≤ λ1 ≤ · · · be a sequence of real numbers. Put N(T ) = #{j | λj ≤ T}.
For considering the spacing distribution, we can normalize λj such that N(T ) ∼
T (T →∞)

Define the measure by

µ(N) = µ(λ0, · · · , λN )[a, b] =
1
N

#{0 ≤ j ≤ N − 1 | ∆j ∈ [a, b]}
(

∆j = λj+1 − λj

)

which we call the spacing distribution.
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Examples.

(1) Prime Numbers

Let pj be the j-th prime. By the prime number theorem, its normaliza-

tion is given by λj =
pj

log pj
. Numerical experiments [KS2, Figure 1] suggest

that µ(N) → e−xdx. But we have no way to prove it up to the present.

(2) Zeros of the Riemann zeta function

For numerical example we can assume the Riemann Hypothesis. Let

ρj =
1
2

+ γj

√−1 be non-trivial zeros with 0 < γ1 ≤ γ2 ≤ · · · . The normal-

ization is given by γ̃j =
γj log γj

2π
by Riemann. The well-known numerical

experiments by Odlyzko [O] suggest that the spacing distribution µ(N)

tends to that of GUE. We call this phenomenon the Montgomery-Odlyzko

Law.

1. The Riemann Zeta Function

In this section we explain the result of Rudnick and Sarnak [RS] on the spacing

distribution of zeros of the Riemann zeta function. Although their main theorem

does not assume the Riemann Hypothesis, here we assume it for simplicity. As was

given in the previous section, we have the normalized sequence γ̃j = γj log γj

2π . Let

BN = {γ̃1, ..., γ̃N} be the set of first N elements. What we want to know is the

number

N(a, b) = #{k | γ̃k+1 − γ̃k ∈ [a, b]}
for any interval [a, b]. But this quantity is hard to treat directly, since it is hard

to tell if two elements are consecutive or not unless we know all members in the

sequence. So we put

N2 = N2(a, b) = #{(γ̃, γ̃′) ∈ B2
N | γ̃ < γ̃′, γ̃′ − γ̃ ∈ [a, b]}

and

N3 = N3(a, b) = #{(γ̃, γ̃′, γ̃′′) ∈ B3
N | γ̃ < γ̃′ < γ̃′′, γ̃′′ − γ̃ ∈ [a, b]}

and so on. To be precise, for a positive integer n, the integer Nn is the number of

n-tuples whose difference between the biggest and the smallest elements belong to

[a, b]. Then we have inductively

N(a, b) = N2 −N3 + N4 − · · ·
which is a finite alternating sum. Therefore it suffices to obtain the numbers Nn

for n = 2, 3, 4.... Rudnick and Sarnak generalized Nn as follows:
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Definition. (n-level correlation) Let f be a function of n-variables. The n-level

correlation is

R(n)(f,BN ) =
1
N

∑
(j1,...,jn)
distinct

f(γ̃j1 , ..., γ̃jn
)

The special case when

f(· · · ) =

{
1 max

k
γ̃jk

−min
k

γ̃jk
∈ [a, b]

0 otherwise

gives

R(n)(f,BN ) =
n!
N

Nn.

So the n-level correlation is a generalization of Nn. In what follows we will study

R(n)(f, BN ).

For our purpose, it suffices to consider functions f satisfying the following three

conditions:

(1) f(x1, ..., xn) is symmetric.

(2) f(x1 + t, ..., xn + t) = f(x1, ..., xn) for t ∈ R.

(3) f(x) → 0 rapidly as |x| → ∞ in the hyperplane
∑
j

xj = 0.

Theorem 1 (Rudnick-Sarnak)[RS]. Assume that f satisfies the above three

conditions and that its Fourier transform f̂ satisfies

supp(f̂(ξ)) ⊂




∑

j

|ξj | < 2



 ,

then

Rn(f,BN ) →
∫

Rn

f(x)Wn(x)δ
(

x1+···+xn

n

)
dx1...dxn

as N →∞, where δ(x) is the Dirac mass at 0 and Wn(x) = det
(

sin π(xi−xj)
π(xi−xj)

)
.

Idea of Proof:. By using the explicit formula, we can transform the sum in the

definition of the n-level correlation to the sum over prime numbers. It is the for-

mula of the type
∑

(j1,...,jn)
distinct

=
∑

(p1,...,pn)
primes

. Then we calculate the latter sum by a very

complicated combinatorial technique. ¤

3



2. Congruence Zeta Functions

In this section we introduce the results of Katz and Sarnak [KS] [KS2]. Let C/Fq

be a curve with function field k. The congruence zeta function is defined as

ζ(C, T ) =
∏

v:place of k

(
1− T deg(v)

)−1

.

It is well-known that it has the following expression.

ζ(C, T ) =
P (C, T )

(1− T )(1− qT )
,

where P is a polynomial of degree 2g with g being the genus. The Riemann Hy-

pothesis, which was proved by Deligne, asserts all zeros of P lie on |T | = q−1/2. We

put zeros as eiθj q−1/2 (j = 1, 2, ..., 2g) Out interest is the spacing distribution of

{θj}. Although there are only finite number of elements, an interesting phenome-

non is observed if the curve C varies. We will consider a family of congruence zeta

functions and will take a certain limit in the family.

By the process described before we have the measure µC which we are interested

in. Their main theorem asserts the measure µC tends to a universal one deriving

from general classical compact groups.

For a unitary matrix A, we have a finite sequence of eigenvalues of it. We define

the measure µA by the same procedure from the sequence. The following lemma

assures the existence of the universal measure.

Lemma (Katz-Sarnak). There exists a measure µuniversal such that

lim
N→∞

∫

G(N)

µAdA = µuniversal

with G = U, SU,O, SO,USp.

When two measures µ and ν are given, we put D(µ, ν) = sup
x∈R

|µ((−∞, x] −
ν(−∞, x])| which is called the discrepancy of the measures. If D(µ, ν) is zero, the

two measures are essentially equal. The following theorem says our measure µC

“converges” to the universal measure.

Theorem 2. (Katz-Sarnak). Let Mg(Fq) be the set of isomorphism classes of

curves with genus g. Then

lim
g→∞
q→∞

∑
C∈Mg(Fq)

D(µC , µuniversal)

#Mg(Fq)
= 0
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Sketch of the Proof. There are following three keys in the proof.

(1) The monodromy group = full Sp(2g).

(2) Equidistribution theorem of Deligne

(3) Law of large numbers

We deduce the map

Mg(Fq) 3 C → Frobenius θ(C) ∈ USp(2g)

is surjective. ¤

3. Examples of “Global Monodromy”

In the title, Global Monodromy has to be in double quotation marks, because

it cannot be defined precisely. What we learned from the function field case is

that interesting phenomena arise when we consider a family of zeta functions. The

monodromy group plays the role of gluing those zeta functions. In the proof of

the Riemann Hypothesis for function field cases, Deligne proved it not for a single

zeta function, but for a family of zeta functions altogether. So if the original

Riemann Hypothesis should be solved, we expect that we will be able to discover a

family of zeta functions together with its monodromy group, which dominates the

zeros. Although the definition of family and monodromy is not discovered at the

present, we will introduce some results which will make us believe the existence of

monodromy groups for various families of zeta functions.

Philosophy. Let f be a source of L-function such as an automorphic form. We

want to consider a family F of f . Although we have no precise rule on what family

we can treat, we can give some examples later. For an element f ∈ F , we assume

the conductor of f is defined, which is a positive number and is denoted by cf . Put

FX = {f ∈ F | cf ≤ X}. Let 1
2 + iγ

(j)
f (j = 1, 2, ...) be nontrivial zeros of L(s, f).

The Generalized Riemann Hypothesis asserts γ
(j)
f ∈ R. For zeros with γ

(j)
f ∈ R, we

assume γ
(i)
f ≤ γ

(j)
f if i ≤ j. We put the sequence γ̂

(j)
f =

γ
(j)
f log cf

2π The distribution

of the j-th lowest zero is defined by

µj(X,F)[a, b] =
1

|FX |#{f ∈ F | cf ≤ X, γ̂
(j)
f ∈ [a, b]}

The density of low-lying zeros in O( 1
log cf

) is defined by

W (X,F , φ) =
1

|FX |
∑

cf≤X

D(f, φ),
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where

D(f, φ) =
∑

j

φ
(
γ̂

(j)
f

)

and φ is a rapidly decreasing function defined on R. (If γ
(j)
f is not real, the value

of φ should be considered as zero.)

We hope that

µj(X,F) → µj(F)

for some µj(F) and that

W (X,F , φ) →
∫ ∞

−∞
φ(x)W (F)dx

for some W (F)dx as X →∞.

In the function field case we observed that µj(X,F) and W (X,F , φ) were deter-

mined by the limit of the monodromy group. We expect such phenomena for global

cases as well. Although we can’t define the monodromy groups, we have some ex-

amples as below. In what follows the conjectural monodromy group will be denoted

by “G(F)”.

Example 1.

Let F = {χ | primitive character mod q, χ2 = 1}. Then L(s, f) = L(s, χ) which

is the Dirichlet L-function, and the conductor cχ = q is in the usual sense.

Prediction. “G(F)” = Sp(∞)

We have some evidences for this prediction. The first is the following theorem.

Theorem 3.1 (Katz-Sarnak). If supp(φ̂) ⊂ (−2, 2),

W (X,F , φ) →
∫ ∞

−∞
φ(x)ω(Sp, x)dx

where ω(Sp, x) = 1− sin 2πx
2πx

The second evidence is Rubinstein’s experiment [R]. He investigated numerically

the distributions of νj(F , X) (j = 1, 2) and W (X,F) for X ≈ 1012. He finds an

excellent fit with the Sp(∞) predictions.

As the third evidence, we have the Hazelgrove phenomenon as follows. Hazel-

grove numerically computed zeros in this family for moderate sized q. He found

that the zeros repel the point s = 1
2 . The density of ν1(Sp) vanishes to second order

at 0 and this is unique to the Sp symmetry. So this phenomenon is a manifestation

of the symplectic symmetry.
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Example 2.

Let ∆ be the cusp form for SL2(Z) of weight 12. Let F = {∆ ⊗ χ | χ mod q}.
We consider the family of L-functions

L(s, ∆⊗ χ) =
∞∑

n=1

τ(n)χ(n)
n

11
2 +s

.

We have two subfamilies F+ and F− according to the signature of the functional

equation of L(s, ∆⊗ χ). Putting the conductor c∆⊗χ = q2, the global monodromy

is predicted as follows:

Prediction.

“G(F+)” = lim
n→∞

SO(2n)

“G(F−)” = lim
n→∞

SO(2n− 1)

The first evidence is the following theorem.

Theorem 3.2 (Katz-Sarnak). If supp(φ̂) ⊂ (−1, 1), as X →∞

W (X,F+, φ) →
∫ ∞

−∞
φ(x)ω(SO(even), x)dx.

W (X,F−, φ) →
∫ ∞

−∞
φ(x)ω(SO(odd), x)dx.

We also have Rubinstein’s numerical experiments [R] with νj(X,F±) (j = 1, 2)

and W (X,F±) with X ≈ 106, which agree with the O(∞)-predictions.

Example 3.

Let F = {f | holo Hecke eigen cusp form for PSL(2,Z)of wt k}. We consider

the family of automorphic L-functions. We again have two subfamilies F+,F−
owing to the functional equation. In fact the sign is +1 if k ≡ 0(4) and −1 if

k ≡ 2(4). By putting cf = k2, we predict as follows.

Prediction.

“G(F+)” = lim
n→∞

SO(2n)

“G(F−)” = lim
n→∞

SO(2n− 1)
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Theorem 3.3 (Iwaniec-Luo-Sarnak). If supp(φ̂) ⊂ (−1, 1), as X →∞

W (X,F+, φ) →
∫ ∞

−∞
φ(x)ω(SO(even), x)dx

W (X,F−, φ) →
∫ ∞

−∞
φ(x)ω(SO(odd), x)dx

If we assume the Generalized Riemann Hypothesis, we get it for supp(φ̂) ⊂ (−2, 2).

Example 4.

Let F = {f | holo cusp form, wt k for Γ0(N)}. Here we are interested in the

subfamily of newforms Hk(N) = {f | new form} ⊂ F . We assume that the cen-

tral character of f is trivial and for simplicity we also assume N is prime. Let

H+
k (N),H−

K(N) be the subfamilies defined from the functional equation as the

preceding examples. Putting cf = N , we predict as follows.

Prediction.

“G(F+)” = “G(H+
k (N))” = lim

n→∞
SO(2n).

“G(F−)” = “G(H−k (N))” = lim
n→∞

SO(2n− 1).

We have the following theorem as an evidence.

Theorem 3.4 (Iwaniec-Luo-Sarnak). If supp(φ̂) ⊂ (−1, 1), as X →∞

W (X, H+
k (N), φ) →

∫ ∞

−∞
φ(x)ω(SO(even), x)dx

W (X, H−
k (N), φ) →

∫ ∞

−∞
φ(x)ω(SO(odd), x)dx

If we assume the Generalized Riemann Hypothesis, we get it for supp(φ̂) ⊂
(−2, 2).

Example 5.

Let F = {∨2f | f ∈ Example 3}. We consider the symmetric squared L-

functions L(s,∨2f). It is equal to L(s, f̄) for f̄ a self-dual cusp form on GL3. It

has an Euler product of degree 3. By putting c∨2f = k2, we have

Prediction. “G(F)” = Sp(∞)

The following theorem is proved as an evidence.
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Theorem 3.5 (Iwaniec-Luo-Sarnak). If supp(φ̂) ⊂ (−1, 1), as X →∞
W (X,F , φ) →

∫ ∞

−∞
φ(x)ω(Sp, x)dx

If we assume the Generalized Riemann Hypothesis, we get it for supp(φ̂) ⊂ (− 4
3 , 4

3 ).

From the examples given above, we have the following general conjecture.

Density Conjecture.

W (X,F , φ) converges to the claimed density without any restriction on φ̂.

4. Applications

In the settings given in Example 4, we have some remarkable applications. The

Density Conjecture implies that
#{f ∈ F | cf ≤ X, εf = 1, L(1

2 , f) 6= 0}
#{f ∈ F | cf ≤ X, εf = 1} → 1

as X → ∞. Towards the Density Conjecture, we have some partial results as

follows:

Theorem 4.1 (Iwaniec-Sarnak-Luo). Assume the Generalized Riemann Hy-

pothesis, then
#{f ∈ H+

2 (N) | L( 1
2 , f) 6= 0}

#{f ∈ H+
2 (N)} >

9
16

Theorem 4.2 (Iwaniec-Sarnak).

lim
N→∞

#{f ∈ H+
2 (N)|L( 1

2 , f) ≥ 1
(log N)2 }

#{f ∈ H+
2 (N)} ≥ 1

2

Theorem 4.3 (Iwaniec-Sarnak).

If Theorem 4.2 holds with any C > 1
2 in place of 1

2 , there are no Siegel zeros!
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